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Abstract

A time-lock puzzle is a mechanism for sending messages “to the future”. The sender publishes a
puzzle whose solution is the message to be sent, thus hiding it until enough time has elapsed for the
puzzle to be solved. For time-lock puzzles to be useful, generating a puzzle should take less time than
solving it. Since adversaries may have access to many more computers than honest solvers, massively
parallel solvers should not be able to produce a solution much faster than serial ones.

To date, we know of only one mechanism that is believed to satisfy these properties: the one proposed
by Rivest, Shamir and Wagner (1996), who originally introduced the notion of time-lock puzzles. Their
puzzle is based on the serial nature of exponentiation and the hardness of factoring, and is therefore
vulnerable to advances in factoring techniques (as well as to quantum attacks).

In this work, we study the possibility of constructing time-lock puzzles in the random-oracle model.
Our main result is negative, ruling out time-lock puzzles that require more parallel time to solve than
the total work required to generate a puzzle. In particular, this rules out black-box constructions of such
time-lock puzzles from one-way permutations and collision-resistant hash-functions. On the positive
side, we construct a time-lock puzzle with a linear gap in parallel time: a new puzzle can be generated
with one round of n parallel queries to the random oracle, but n rounds of serial queries are required to
solve it (even for massively parallel adversaries).

1 Introduction

In this paper we revisit the subject of “timed-release crypto” based on “time-lock puzzles”. The goal of
timed-release crypto, introduced by May [22], is to encrypt a message in such a way that it will be readable
at some specified time in the future (even without additional help from the sender), but not before then.

In addition to the basic use of “sending messages to the future”, there are many other potential uses
of timed-release crypto. Rivest, Shamir and Wagner [25] suggest, among other uses, delayed digital cash
payments, sealed-bid auctions and key escrow. Boneh and Naor [9] define timed commitments and timed
signatures and show that they can be used for fair contract signing, honesty-preserving auctions and more.

A natural approach to building a timed-release crypto scheme is the use of time-lock puzzles: puzzles
that take a pre-specified amount of time to solve (which should be significantly longer than the time to
generate the puzzle). Intuitively, using the solution of a time-lock puzzle as the key to an encryption scheme
would force anyone wanting to decrypt the message to perform the computation for the time required to
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solve the puzzle. By tuning the difficulty of the solution according to the time we would like the message to
remain secure, we can ensure that decryption will take at least that amount of time.

Inverting a (suitably weak) one-way function seems like an obvious candidate for a time-lock puzzle.
However, as Rivest et al. observed, for many uses a generic one-way function would not suffice. This
is because a potential adversary may have access to much larger computational resources than an honest
party. Even if the processors available to the adversary are not be significantly faster than those available
to the honest parties, it is reasonable to assume that a well-funded adversary could have access to many
more processors (that could be used in parallel). Thus, we require that time-lock puzzles be “essentially
sequential” in nature: having many parallel processors should not give a large advantage over a single
processor in solving the puzzle.

The puzzles proposed in [25] are based on the conjecture that exponentiation (modulo an RSA integer)
is such a task. In particular, if the factorization of the modulus is not known, the best known method for
exponentiation is repeated squaring (which is conjectured to be essentially sequential). Given the factors
of the modulus, however, there is a shortcut that allows the exponentiation to be performed much faster (so
that the puzzles can be generated efficiently). Thus, there seems to be a super-polynomial gap between the
work required to generate the puzzle and the parallel time required to solve it (for a polynomial number of
parallel processors).

To the best of our knowledge, this construction of time-lock puzzles is the only one currently known that
is resistant to parallel attack. The construction of Boneh and Naor [9] uses essentially the same idea. This
leads to the natural question of whether we can construct time-lock puzzles based on other assumptions,
preferably weaker and more general ones.

Biham, Goren and Ishai [5] suggest an additional motivation as well: obtaining (weak) key-agreement
protocols based on one-way functions that resist quantum attack. They show that in the classical world there
do exist weak key-agreement protocols based on one-way functions (of exponential strength) that force an
adversary to work in time quadratic in the time of the honest parties, based on a variant of Merkle puzzles
[23]. However, both their construction and the original Merkle puzzles are vulnerable to quantum attack via
Grover’s search algorithm [20]. Biham et al. note that Grover’s speedup only applies to parallel search, and
leave as an open problem whether such puzzles exist that are resistant to parallel attack (and thus, potentially,
to quantum attack as well).

In this paper, we study the problem in the random oracle model. In the random oracle model, we assume
all parties have access to an oracle, H, modeled as a random function. In a real implementation, the random
oracle is usually “instantiated” with a cryptographic hash function. We assume the adversary in this model
is computationally unbounded, and measure the difficulty of the time-lock puzzle by the number of queries
the adversary is required to make to the random oracle in order to solve it.

The random oracle model is interesting for several reasons. First, negative results in this model rule
out “black-box” constructions from one-way permutations and collision-resistant hash functions (since a
random function is collision-resistant and indistinguishable from a random permutation using only a small
number of queries; see e.g., [21, 19, 3] for details). Second, most “natural” protocols that have been proven
secure in the random oracle model appear to be secure in practice as well (even though some “artificial”
protocols are secure in this model but insecure for any explicit instantiation of the random oracle [11]),
and constructing a protocol in this model is sometimes a first step towards constructing a provably-secure
protocol in the plain model (e.g., the first efficient IBE scheme was proven secure in the random oracle
model [8], after which constructions were found in the standard model as well [12, 6, 7]). Finally, the
random oracle model is much simpler to analyze than models that incorporate computational complexity,
and better understanding the problem in this setting may give insight into the complexity-theoretic case.

We can think of a time-lock puzzle generator as a randomized oracle algorithm f . The output of f H(rA)
(where rA is the random input and H the random oracle) is a pair (M,V): the puzzle M and a solution
validator V. The solver, given M, must output a solution x such that V(x) = 1. When a time-lock puzzle
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has a single solution, such as when it is used to hide an encrypted message, V just compares its input to
that constant value. In general, however,V may perform more complex verification and our negative results
hold even when V is not efficient. For this to be a good time-lock puzzle, we would like f to be easy
to compute but moderately hard to solve, even for a parallel adversary. More precisely, if we can compute
(M,V)← f H(rA) using n queries to H, we would like f to satisfy:

Completeness.

• There exists a (randomized) polynomial-time algorithm g (the honest solver) that solves puzzles gen-
erated by f : with high probability (over the random coins of f and g and the random oracle H), if
we generate (M,V) ← f H(rA) and x ← gH(rB,M) then V(x) = 1. We use the shorthand notation
[(M,V) ← f H(rA); x ← gH(rB,M);V(x) = 1] to denote the event that the puzzle was generated as
described above, the solver was run and its solution was valid. We denote by m > n the number of
queries g makes to H. m measures the difficulty for the honest solver and should be moderately larger
than n, e.g., a large polynomial in n.

Soundness.

• Any algorithm that solves f and makes up to q � m queries to H must use at least m′ ≈ m levels of
adaptivity. For example, we might take q = nω(1) and m′ = m/2. The number of levels of adaptivity
measures the complexity for a parallelized adversary; this requirement means that unless the adversary
makes a very large number of queries, using parallelism won’t give it an advantage over the honest
solver.

1.1 Our Results

Time-lock puzzles with large difficulty gap are impossible. Our main result is a negative one. We show
that for every time-lock puzzle there exists a parallel adversary that can solve the puzzle in no more time
than it takes to generate and makes only polynomially more queries to the random oracle than the best honest
(serial) solver. Thus, constructing time-lock puzzles with a “gap” between the work of the puzzle generator
and the parallel time of the solver cannot be done in the random-oracle model.

Concretely, we prove two similar theorems but with incomparable parameters. On one hand, we show
how to construct an adversary that makes an optimal number of parallel query rounds, but may require super-
polynomial time to run, even if the honest solver is efficient. On the other hand we give a much simpler,
efficient adversary construction (which runs in polynomial time if the honest solver does), but has slightly
worse adaptivity (an additional advantage of the second construction is that its proof is much simpler).

Formally, we prove the following two theorems: 

Theorem 1.1 (Optimally Adaptive but Inefficient Adversary). Let f be an oracle algorithm that makes at
most n queries to a random oracle H and g an oracle algorithm that makes at most m > n queries to H. If
Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥ 1 − ν (i.e., when a puzzle is randomly generated after

which the solver g is executed, its output is a valid solution with probability at least 1 − ν over the random
coins rA, rB and H) then for all ε ∈ (0, 1) there exists an adversary h that makes Õ(nm/ε) queries to H, uses
only n levels of adaptivity and satisfies Pr

[
(M,V)← f H(rA); x← hH(rJ ,M);V(x) = 1

]
≥ 1 − ν − ε (where

rJ is the variable denoting the random coins used by h).

Theorem 1.2 (Efficient but Non-Optimal Adversary). Let f be an oracle algorithm that makes at most
n queries to a random oracle H and g an oracle algorithm that makes at most m > n queries to H. If
Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥ 1 − ν (i.e., when a puzzle is randomly generated after
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which the solver g is executed, its output is a valid solution with probability at least 1 − ν over the random
coins rA, rB and H). Then, there exists a deterministic adversary Javier (denoted by J) who asks n/ε rounds
of adaptive queries with a total of at most n ·m/ε queries in time O(N · T ) where T is the running time of g,
and it achieves completeness Pr

[
(M,V)← f H(rA); x← JH(M);V(x) = 1

]
≥ 1 − (ν + ε).

(See Section 2 for a more detailed version of Theorem 1.2.)
The adversaries constructed in the proof of both the theorem attempt to find all intersection queries

between the puzzle generator and an honest puzzle solver — all queries to the oracle that were made by
both. If successful, the adversary can then simulate an honest solver without asking additional queries.

Both adversary constructions work in rounds, and query the random oracle only at the end of a round.
Our aim is to reduce the total number of rounds (this is the “adaptivity level” of the adversary). The con-
structions differ in how they choose which queries to ask in each round, and in the corresponding proofs that
the adversary succeeds in learning all of the intersection queries with high enough probability.

Loosely speaking, Javier, the adversary constructed in the proof of Theorem 1.2, works by running
the honest solver in each round, but replacing its queries to the random oracle with a simulated oracle
(so no queries to the real oracle are made during an execution). After the simulation, Javier updates the
simulated oracle by querying the real oracle (in parallel) on every index that was queried during the simulated
execution. The main idea in the proof is that, since the puzzle generator asks only n queries, there can be
at most n rounds in which the simulated execution “hits” an intersection query that was not already known
to Javier. In the remaining rounds, Javier does know all the intersection queries, and hence the simulated
solver will behave just like the real honest solver (and output a correct solution to the puzzle with the same
probability). The full proof of Theorem 1.2 appears in Section 2.

For the adversary of Theorem 1.1, we use ideas (and a construction) similar to those of Impagliazzo and
Rudich[21] (and later developments by Barak and Mahmoody [4]). Our analysis is novel in that we attempt
to minimize the number of query rounds used by the adversary and not just the total number of queries. (The
analysis of [4] strongly uses the fact that the adversary can make its queries fully adaptively.) The full proof
of Theorem 1.1 appears in Section 3.

By combining Theorem 1.1 with the result of [4], we partially resolve the open question of Biham et al.
[5] by showing that every key-agreement protocol in the random-oracle model can be broken by a parallel
attack that makes polynomially many queries to the random-oracle1:

Corollary 1.3. Let Π be a two-party protocol in the random oracle model such that when executing Π the
two parties Alice and Bob make at most n queries each and their outputs are identical with probability
at least 1 − ν. Then for every 0 < ε < 1 there exists an adversary that, given the public transcript of the
protocol, outputs a value that agrees with Bob’s output with probability 1−ν−ε using 2n levels of adaptivity
and making Õ(n3/ε3) total queries to H.

Proof. Let f H(rA, rB) be the complete public transcript of Π when Alice uses the random coins rA and Bob
the random coins rB. Think of f as the puzzle generator, and define the corresponding solution validator to
be

V(x) =

1 if x is Bob’s output in the execution of Π in f H(rA, rB)
0 otherwise

.

By the result of [4], there exists an adversary that makes at most O(n2/ε2) queries to H and outputs a
“correct” solution to this puzzle (i.e., an output that agrees with Bob) with probability 1 − ν − ε/2. Think
of this adversary as the solver, g. By Theorem 1.1, this implies that there exists a solver that succeeds

1Biham et al. were interested in whether there exist key-agreement protocols that resist quantum attack, but as a step towards this
goal asked the question of whether there exist such protocols secure against a parallel classical attacker, and specifically whether
such protocols could be based on random functions.
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with probability 1 − ν − ε, makes Õ((2n/ε) · n2/ε2) = Õ(n3/ε3) total queries to H and uses only 2n levels
of adaptivity (the 2n is because the total number of queries made by f is bounded by the total number of
queries made by both Alice and Bob). �

A time-lock puzzle with a linear gap in parallel time. Although our negative results rule out “strong”
time-lock puzzles, they still leave open the possibility for a weaker version: one that can be generated with
n parallel queries to the oracle but requires n rounds of adaptive queries to solve.

In a positive result, we show that such a puzzle can indeed be constructed. More formally, we prove:

Theorem 1.4. Let k be a security parameter. There exist oracle functions f and g that satisfy:

1. (Efficiency) (M,VM)← f H(k, r) can be computed using n parallel (non-adaptive) queries to H.

2. (Completeness) x← gH(k,M) can be computed using n serial (adaptive) queries to H and the output
of g always satisfiesVM(x) = 1 (g is deterministic).

3. (Soundness) For every oracle function h that makes less than n serial rounds of queries to H and
poly(k) queries overall to H in total, Pr

[
(M,VM)← f H(k, r); x← hH(k, rJ ,M);VM(x) = 1

]
= neg(k)

(where neg is some negligible function in k).

The idea behind the construction is to force the solver to make sequential queries by “encrypting” each
successive query with the result of an oracle call on its predecessor. The full construction and a sketch of its
security proof appear in Section 4.

1.2 Related Work

Timed-Release Crypto Constructions. The notion of timed-release crypto was introduced by May [22].
May’s proposal was to publish an encrypted message and distribute the decryption key between several
trusted agents. The agents would be instructed to publish their shares of the key at a specified future date.
Rivest, Shamir and Wagner [25] introduced the idea of using time-lock puzzles instead of requiring a sender
to trust an external entity and also developed May’s “trusted-agent” approach, suggesting a scheme where
the trusted agents’ storage does not grow with the number of timed-release messages (as it does in May’s
scheme).

These two approaches, one based on puzzles and the other on trusted agents, have remained the basis
of all new timed-release crypto schemes that we know of. There have been many improvements in the
agent-based approach, focusing on reducing interaction between the agents and the users, achieving vari-
ous verifiability and privacy properties ([8, 13, 14], among others). On the other hand, to the best of our
knowledge, all existing time-lock puzzle constructions (that are resistant to parallel attack) are based on the
problem originated by Rivest et al., namely that of exponentiation modulo an RSA integer.

Puzzles. The term “puzzle” to describe a cryptographic construction that is “meant to be broken” was first
used by Merkle in the context of key agreement protocols [23]. Merkle’s key-exchange protocol allows two
users to exchange a key by solving a single puzzle, while forcing an adversary to solve multiple puzzles in
order to discover it. The protocol does not require much structure from the puzzles, and can be instantiated
with black-box use of one-way functions. The computation gap between the honest users and the adversary
is quadratic in Merkle’s scheme: if an honest user requires O(N) time to recover the key, an adversary can
recover it in O(N2) time.

Barak and Mahmoody showed that this is essentially optimal [4], improving a previous result by Im-
pagliazzo and Rudich [21]. Both of these works give an upper bound for the computation gap of arbitrary
key-exchange protocols in the random oracle model (including protocols that require multiple rounds of
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interaction between the two honest parties). Our work considers only one-message protocols, but bounds
the parallel complexity of the adversary (in contrast to [21, 4], who analyze the complexity of serial adver-
saries).

Puzzles have also been proposed as proof-of-work mechanisms for controlling spam and preventing
denial-of-service-attacks. The idea was first introduced by Dwork and Naor [17], and was developed in
multiple subsequent works [1, 2, 16, 18]. Rivest and Shamir even suggest one variant for use as a micropay-
ment system [24].

One major difference between these types of puzzles and those we consider in this work is that resis-
tance to parallel attack is not as critical: for example, an adversary generating spam messages can always
parallelize at the message level rather than by attacking a specific puzzle. Proofs-of-work, on the other
hand, must be resistant to amortization (solving one puzzle should not help in solving others), whereas this
is usually not a concern for time-lock puzzles.

For both types of puzzles, it is still important to take into account the gap between the computational
capability of an honest user and that of the adversary. Abadi, Burrows, Manasse and Wobbler suggest basing
the difficulty of a puzzle on memory access time [1], under the assumption that this has less variance among
users than CPU speed. In a subsequent work, Dwork, Goldberg and Naor [16] construct such a function in
the random oracle model that uses “pointer-chasing” in a large random table. This has a very similar flavor
to our time-lock puzzle construction in Section 4, although the goal is somewhat different and the analysis
focuses on bounding memory accesses (to the table) rather than layers of adaptivity or queries to the random
oracle.

Organization Sections 2 and 3 contain our main (negative) results for general time-lock puzzles (Sec-
tion 3 contains the proof of Theorem 1.1, and Section 2 the considerably simpler construction and proof
of Theorem 1.2). In Section 4 we give a construction of a time-lock puzzle that satisfies the conditions of
Theorem 1.4 and give a sketch of the proof. Finally, in Section 6 we describe some open problems. Note:
to aid in following the proofs, a glossary of symbols is provided at the end of the paper (pg. 26).

2 Efficient but Non-Optimal Adversary

In this section we give the full proof for Theorem 1.2:

Theorem 1.2 (Efficient but Non-Optimal Adversary). Let f be an oracle algorithm that makes at most
n queries to a random oracle H and g an oracle algorithm that makes at most m > n queries to H. If
Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥ 1 − ν (i.e., when a puzzle is randomly generated after

which the solver g is executed, its output is a valid solution with probability at least 1 − ν over the random
coins rA, rB and H). Then, for each of the settings below, there exists a deterministic adversary Javier
(denoted by J) who asks N > n rounds of adaptive queries, asks at most N · m queries in time O(N · T )
where T is the running time of g, and achieves the following bounds for the completeness error probability
δ = 1 − Pr

[
(M,V)← f H(rA); x← JH(M);V(x) = 1

]
.

1. Error close to ν: Javier asks N = n/ε levels of adaptivity with completeness error δ ≤ ν + ε.

2. 2n adaptivity: Javier asks N = 2n levels of adaptivity with completeness error δ ≤ (2n + 1) · ν.

3. O(n) adaptivity and O(ν) error: For arbitrary ρ > 0, Javier asks N = 2(1 + ρ) · n levels of adaptivity
with completeness error δ ≤ 2ν · (ρ + 1)/ρ. For example, by letting ρ = 1, we get N = 4n, and δ ≤ 4ν.

Proof. We will first prove Part 1 of Theorem 1.2. We will then describe how to modify this attack to obtain
Parts 1 and 2 throgh similar attacks with different analysis.
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The adversary Javier (for Part 1) follows Alg. 1. In the algorithm description, Qi(J) is the set of queries
Javier made to H up to (but not including) round i, while Q(Bi) is the set of queries the simulated Bob made
to Hi in Javier’s ith round.

Algorithm 1 Javier’s query algorithm on message M and oracle H with parameter ε
1: Randomly choose i∗ ∈ [n/ε].
2: for i ∈ {1, . . . , i∗} do
3: Run Bob to get: xi ← gHi(rB,M) where Hi is an oracle that answers any query x ∈ Q(J) the same as

H does, and Hi answers any new query q < Q(J) uniformly at random. Note that to run gHi(rB,M) we
do not need to ask any new query to H because all the answers to queries in Q(J) are already known
and the rest are answered at random.

4: Query H on all indices in Q(Bi) \ Qi(J) where Q(Bi) is the queries Bob made to Hi.
5: Output xi∗ .

The total number of queries made by Javier is at most nm/ε and Javier’s running time is O(n/ε) times the
running time of Bob. It remains to show that the probability that Javier’s output is accepted by the solution
validator is at least 1 − ν − ε.

Denote the event that Javier’s output is accepted by the solution validator:

Success
de f
= (M,V)← f H(rA) ∧ xi∗ ← gHi∗ (rB,M) ∧V(xi∗) = 1 .

Call a round i good if Javier did not ask any new intersection queries in round i (i.e., Q(Bi) ∩ Q(A) ⊆
Qi(J)). Denote Goodi the event that round i was good. Since Alice asks at most n queries, there can be at
most n rounds that are not good. Thus, Pr [Goodi∗] ≥ 1 − ε. Note that as long as Goodi∗ holds, the tuple
( f H(rA), gHi∗ (rB,M)) is distributed identically to ( f H(rA), gH(rB,M)), because as long as Bob’s queries in
round i∗ were not queried by Alice, H and Hi∗ both choose their answers at random and independently of
all previous queries and answers. Therefore, for an arbitrary event E defined over the joint view of f H(rA)
and that of Javier till the end of round i∗, to know the quantity Pr [E ∧ Goodi∗] it does not matter whether
we use the oracle H or Hi∗ in round i∗, and the probabilities will remain the same. By misusing the notation,
we also use Goodi∗ to refer to the similar event when Javier uses the oracle H in his simulation of Bob in
round i∗. Thus, we finally conclude:

Pr [Success] ≥ Pr [Success ∧ Goodi∗]

= Pr
[
(M,V)← f H(rA); xi∗ ← gHi∗ (rB,M);V(xi∗) = 1 ∧ Goodi∗

]
= Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1 ∧ Goodi∗

]
≥ Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
− (1 − Pr [Goodi∗])

≥ 1 − ν − ε.

�

Parts 2 and 3. The idea here is to use majority of the solutions obtained in all the emulations of the solver
g instead of using a random one. In particular, we can use a similar algorithm to Algorithm 2 for both Parts
2 and 3 with N given as the adaptivity parameter, and use majority at the end.

To analyze the needed variants of Algorithm 2 (for Parts 2 and 3), first recall that because we have n
queries during the puzzle generation, it holds that for S = {i | i ∈ [N + 1],¬Goodi}, it holds that |S | ≤ n. We
also need the following claim whose proof follows from the same argument used in the proof of Part 1.
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Algorithm 2 Javier’s query algorithm on message M and oracle H with adaptivity parameter N ≥ 2n
1: for i ∈ {1, . . . ,N} do
2: Run Bob to get: xi ← gHi(rB,M) where Hi is an oracle that answers any query x ∈ Q(J) the same as

H does, and Hi answers any new query q < Q(J) uniformly at random. Note that to run gHi(rB,M) we
do not need to ask any new query to H because all the answers to queries in Q(J) are already known
and the rest are answered at random.

3: Query H on all indices in Q(Bi) \ Qi(J) where Q(Bi) is the queries Bob made to Hi.
4: Make one more execution to get: xN+1 ← gHN+1(rB,M) where HN+1 is as defined above.
5: If there is x such that | {i | xi = x} | ≥ (N + 1)/2 (i.e., there is a majority), output x, otherwise output ⊥.

Claim 2.2. For all i ∈ [N + 1], it holds that Pr[¬Goodi ∨ Success] ≥ 1 − ν. Equivalently, it holds that
Pr[i ∈ T ] ≤ ν, where T = {i | i ∈ [N + 1],Goodi ∧ Fail}.

The proof of the above claim again is based on the fact that during the i’th execution, so long as we do
not hit any new private queries, we are indeed executing the solver with the right distribution of the oracle.
Now, note that if i ∈ [N + 1] \ (S ∪ T ) then x = xi.

For Part 2, by a union bound we have Pr[T , ∅] ≤ (N + 1)ν. So if we choose N = 2n, then we have at
least n + 1 index i in [N + 1] \ (S ∪ T ), and so the majority of xi’s will be correct.

For Part 3, we use a slight modification of Algorithm 2 where we skip Step 4 and simply use the majority
of the N answers x1, . . . , xN , and we adapt the definition of S ,T to subsets of [N]. By the linearity of
expectation, we have that E [|T |] ≤ N ·ν. By Markov inequality, for any α > 0, we have Pr[|T | ≥ α·N] ≤ ν/α.
For α = ρ/(2 · (1 + ρ)), we get that

Pr [|T | ≥ α · N] ≤
2ν · (1 + ρ)

ρ
.

Thus, all we have to prove is that whenever |T | < α · N, then we find the right answer. But, in that case:

|S ∪ T | ≤ |S | + |T | < n + α · N = n +
N · ρ

2(1 + ρ)
= n + ρ · n = N/2.

In this case, since x = xi for all i ∈ [N] \ (S ∪ T ) is correct, the majority would be the correct answer.

3 Tight Bound for Time-Lock Puzzle Generation/Solution Gap

In this section, we present the proof of Theorem 1.1, showing that if a time-lock puzzle can be generated
with n queries to the random oracle and solved with m queries, then there exists a parallel solver that can
find a solution in time O(n) and makes only poly(n,m) queries to the oracle.

Overview of Proof. Our proof is heavily based on ideas from Impagliazzo and Rudich [21] and Barak
and Mahmoody [4]. Given a puzzle-generator f (Alice) and a solver g (Bob), we construct an adversary,
Ivy, that finds all intersection queries to the random oracle (the queries made by both Alice and Bob). If
Ivy is successful, we can run a simulation of Bob using the answers from the real oracle on the intersection
queries and randomly chosen answers for all other queries. The simulation of Bob is distributed identically
to an honest Bob (since the answers given by the “real” oracle to the other queries are independent of those
seen by Alice). Thus, the simulation will output a valid solution to the puzzle with the same probability as
an honest solver.

The main technical difficulty is bounding the number of queries (and the levels of adaptivity) used by Ivy.
Impagliazzo and Rudich, and later Barak and Mahmoody, considered interactive protocols (where Alice and
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Bob may exchange messages in multiple rounds). They bound the total number of queries an intersection-
query-finding adversary must make to the random oracle as a function of n, the number of queries Alice
makes to the random oracle, m, the number of queries made by Bob and ε (the probability that the adversary
will miss an intersection query), but do not attempt to analyze the levels of adaptivity required.

We use similar techniques to show that, in the case of one-message protocols (as obtained from f and
g), the total number of adaptive rounds of queries the adversary must use is at most n. Translating back to
the setting of time-lock puzzles, this means a puzzle that requires n queries to generate can always be solved
by making n rounds of queries (where the queries in each round depend only on the results of queries in
previous rounds).

3.1 Oracle Query Processes

Consider a process that iteratively queries the random oracle H : D 7→ R and determines its next query by
some arbitrary function of the responses up to that point. We call such a process an Oracle-Query (OQ)
process. An OQ process F is defined by an initial state V0 = V0(F) ∈ I (which is a random variable that
may, in general, be correlated with H) and its sequence of “next query” functions Fi : I×Ri 7→ D. The view
of the process after the ith iteration, denoted Vi(F) is a random variable consisting of the vector of query
answers seen up to that point (we will omit F if the process is clear from the context):

Vi = Vi−1 � H(Fi(Vi−1)) ,

where � denotes vector concatenation (i.e., (x1, . . . , xn)�y
de f
= (x1, . . . , xn, y)) and V0(F) represents the input

and random coins of the process F. We denote Qi(F)
de f
= (F1(V0), . . . , Fi(Vi−1)) the vector of queries asked

by F up to iteration i.

For a vector of queries S = (s1, . . . , s j), we denote H(S )
de f
= (H(s1), . . . ,H(s j)) the corresponding vector

of oracle responses to the queries in S . To simplify notation, when the order of entries in a vector doesn’t
matter, we will sometimes use set notation to refer to it.

In the context of our puzzle protocol, Alice, Bob and the adversary can be thought of as OQ processes.
In the analysis of the adversary, we will consider them together as a single OQ process (whose input is
the combined random coins of Alice, Bob and the adversary). We rely in the analysis on the fact that the
answers of the random oracle for indices that have not been queried yet are independent of any previous
view. Formally, we will use the following claim:

Claim 3.1. Let F be an OQ process such that V0(F) is independent of the random oracle H. For all query
sets S ⊆ T, every view v, answer vector s and i ≥ 0 such that Pr [Vi = v ∧ T ∩ Qi = ∅] > 0,

Pr [H(S ) = s | Vi = v ∧ T ∩ Qi = ∅] = Pr [H(S ) = s] .

Proof. We can think of the oracle H as performing “lazy-evaluation”: the answer to each query is determined
by flipping new, independent, coins when the query is asked for the first time. Thus, if an OQ process did not
query the oracle on a set of indices, the oracle responses on those indices are independent of the process view.
Since the set of queries made by the process can be computed from its view, and Pr [Vi = v ∧ T ∩ Qi = ∅] >
0, it must be the case that the view v does not contain queries to any of the indices in T ⊇ S . Hence, H(S )
is independent of the event Vi = v (and the event it implies, T ∩ Qi = ∅). �

Corollary 3.2. Let F be an OQ process such that V0(F) is independent of the random oracle and let G be
an arbitrary function of its view. For all query sets S ⊆ T, every g in the range of G, answer vector s and
i ≥ 0 such that Pr

[
G(Vi) = g ∧ T ∩ Qi = ∅

]
> 0,

Pr
[
H(S ) = s | G(Vi) = g ∧ T ∩ Qi = ∅

]
= Pr [H(S ) = s] .
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Proof. By the law of total probability:

Pr
[
H(S ) = s | G(Vi) = g ∧ T ∩ Qi = ∅

]
=

∑
v|G(v)=g

Pr
[
H(S ) = s | G(Vi) = g ∧ T ∩ Qi = ∅ ∧ Vi = v

]
· Pr

[
Vi = v | G(Vi) = g ∧ T ∩ Qi = ∅

]
=

∑
v|G(v)=g

Pr [H(S ) = s | T ∩ Qi = ∅ ∧ Vi = v] (3.1)

· Pr
[
Vi = v | G(Vi) = g ∧ T ∩ Qi = ∅

]
= Pr [H(S ) = s] ·

∑
v|G(v)=g

Pr
[
Vi = v | G(Vi) = g ∧ T ∩ Qi = ∅

]
(3.2)

= Pr [H(S ) = s] ,

where (3.1) is because Vi = v implies G(Vi) = g and (3.2) follows from Claim 3.1. �

3.2 Attack and Analysis

3.2.1 Overview

Our attacker, Ivy, selects her queries to the random oracle in n rounds. In round j, Ivy computes a set of
heavy queries on which she will query the oracle at the end of the round. Heavy queries are those that have
a high probability of having been made by Alice (where “high” is a parameter that depends on n, m and ε).

The intuition behind Ivy’s attack, at a high level, is that, as long as Bob has not hit any of Alice’s
“private” queries (those not made by Ivy), Bob doesn’t know any more than Ivy about Alice’s view. Thus,
any private query must be “light” conditioned on his view. By definition, the probability that Bob hits a
light query is small. We can then take a union bound over all of Bob’s queries, and conclude that the total
probability that Bob hits a private query is small.

Note that the intuition above isn’t entirely correct: even querying an index that was not queried by
Alice may give Bob information about Alice’s view: the fact that Alice didn’t query a particular index. We
observe, however, that this is the only information about Alice’s view that Bob can gain from making a
non-intersection query — the response of the oracle to the query does not give any additional information
(this is a general property of OQ processes that is captured in Claim 3.1). Thus, if we condition on Bob not
having made any private intersection queries so far, our intuition still holds. By lowering Ivy’s “heaviness
threshold” we can ensure that for each query Bob makes, if Ivy hasn’t also made the query then it is a non-
intersection query with “high probability” (conditioned on Bob’s view); The probability is high enough that
this additional information will not change the distribution of Alice’s queries according to Bob too much
(compared to Ivy’s view), so the same argument will continue to work for Bob’s successive queries.

Ivy’s algorithm is very similar to that of the adversary of Barak and Mahmoody (who we will call Eve).
Eve iteratively determines the heavy queries by conditioning her probability space after each query on her
entire view so far. Thus, the levels of adaptivity Eve uses is bounded by her total number of queries to the
oracle. In our work, the point is to bound the number of rounds of adaptivity. To do this, we must modify
the attack to let Ivy ask many queries in parallel.

Our solution to this is to have Ivy condition her probability space after each query only on the event
that this query was not an intersection query, rather than on the response of the oracle to that query. Since
this event does not require Ivy to query the oracle in order to compute the new query probabilities, she can
ask multiple parallel queries in each round. Loosely speaking, Ivy’s query strategy ensures that if there are
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any remaining heavy queries, then one of her queries will be an intersection query with high probability.
Since the number of intersection queries can be at most n, within n rounds Ivy can ensure that there are no
remaining heavy queries.

3.2.2 Notation

Below we formally describe the game played by Alice, Bob and Ivy (the adversary). All three can be thought
of as OQ processes, with next-query functions {Ai}, {Bi} and {Ii} respectively. Since Ivy makes queries non-
adaptively, we will abuse the notation somewhat: V j(I) (resp. Q j(I)) will refer to Ivy’s view (resp. queries
made) after the jth round of queries (rather than the jth individual query). When we refer to the views or
query vectors without a subscript, we mean the entire view (resp. query vector).

Probabilities are always taken to be over the space of full executions of the protocol; the randomness
consists of the parties’ random coins and the coins of the random oracle, H.

M will be the random variable whose value is the message sent by Alice ((M,V) ← f H(rA)). This
message is given to Bob and Ivy as input: V0(B) = (rB,M) and V0(I) = (M). (Ivy is deterministic and has
no random coins.) Note that the inputs of Bob and Ivy are not independent of H (since M may depend on
H). We denote by qi(B) the ith query asked by Bob (i.e., Q(B) = (q1(B), . . . , qm(B))).

We say q is an intersection query if q ∈ Q(A) ∩ Q(B) (i.e., q is queried by both Alice and Bob). We say
q is a private query if q is an intersection query that is not made by Ivy (i.e., q ∈ Q(A) ∩ Q(B) \ Q(I)). We
define Fail( j) to be the event that after Ivy’s jth round of queries to the random oracle, she has not managed
to “hit” all the intersection queries:

Fail( j) de f
=

[
Q(B) ∩ Q(A) * Q j(I)

]
.

Denote
Fail

de f
= Failn .

Let ε be the error parameter (we will allow Ivy to fail with probability ε) and

γ
de f
= ε/(2em)

a “heaviness threshold” used by Ivy in her attack algorithm (e is the Euler constant).
We denote Q j the set of queries that Ivy makes to the random oracle in the jth round, and let

Miss j
de f
=

[
Q j(I) ∩ Q(A) = Q j−1(I) ∩ Q(A)

]
be the event that Q j(I) \ Q j−1(I) does not contain any queries of Alice. Let

NoMiss j
de f
=

 j∧
k=1

¬Missk


denote the event that Ivy hits at least one more of Alice’s queries in each of the first j rounds and

FirstMiss j
de f
=

[
Miss j ∧ NoMiss j−1

]
denote the event that round j is the first at which Ivy misses all of Alice’s queries.

11



3.2.3 The Attack

Ivy attempts to “hit” queries that were made by Alice by including in Q j all the queries that Alice is likely
to have made, conditioned on Ivy’s view to that point and on having missed all the previous queries in Q j.
Ivy continues adding heavy queries to Q j until none are left, or until the probability that all the queries miss
(i.e., that the event Miss j occurs) is small enough. Since Alice makes at most n queries and Ivy’s algorithm
has n rounds, either there exists at least one round for which Miss j occurs or over all rounds Ivy makes all
of Alice’s queries (in which case she must also have made all intersection queries).

The formal description of Ivy’s algorithm is as follows:

Algorithm 3 Ivy’s query algorithm on message M and oracle H

1: v(0)
I ← (M) // Ivy’s initial state consists of the message M sent by Alice

2: for j ∈ {1, . . . , n} do // j is the adaptivity level
3: Let Q j ← ∅. // Q j is the set of planned queries for adaptivity level j
4: while ∃q such that

Pr
[
q ∈ Q(A) \ (Q j ∪ Q j−1(I)) | Q j ∩ Q(A) = ∅ ∧ NoMiss j−1 ∧ V j−1(I) = v( j−1)

I

]
≥ γ do

5: Let q be the lowest-indexed query that satisfies the condition.
Q j ← Q j � q.

6: if Pr
[
Q j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
< ε/2n then

7: break // Exit while loop
8: Query the random oracle on Q j.
9: v( j)

I ← v( j−1)
I � H(Q j).

We claim that Ivy is successful in asking all the intersection queries (except with small probability) and
that Ivy does not ask too many queries or use too many levels of adaptivity. The former is captured by
Lemma 3.3 and the latter by Lemma 3.7.

3.2.4 Success of the attack

Lemma 3.3. The probability that there is an intersection query that is not queried by Ivy is at most ε.

We break up the proof of the lemma into several claims, all of which use the following notation:
Let Good( j)

i be the event that the first i queries made by Bob are either not intersection queries or were
queried by Ivy in her first j rounds (i.e., {q1(B), . . . , qi(B)} ∩ Q(A) ⊆ Q j(I)). Thus, Good( j)

0 is always true.
Let Fail( j)

i be the event that Bob’s ith query is the first intersection query that was missed by Ivy in her first j
rounds (i.e., Good( j)

i−1 holds and qi(B) ∈ Q(A) \ Q j(I)).
Intuitively, the following claim says that conditioned on FirstMiss j and Good( j)

i , knowing the answer to
Bob’s ith query doesn’t affect the heaviness of any query.

Claim 3.4. For every query q, all j ∈ {1, . . . , n}, i ∈ {1, . . . ,m − 1} and all views v( j−1)
I ,v(i)

B such that
Pr

[
FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi(B) = v(i)

B

]
> 0 it holds that

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi(B) = v(i)

B

]
= Pr

[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
Proof. Denote v(i)

B = v(i−1)
B � z (i.e., let z be the answer to the ith oracle query in the view described by

v(i)
B ). Note that qi(B) is a deterministic function of Vi−1(B), so after conditioning on Vi−1(B) = v(i−1)

B it is a
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constant. Denote this constant q′ and Let W
de f
=

[
FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
.

Then,

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi(B) = v(i)

B

]
= Pr

[
q ∈ Q(A) \ Q j(I) | W ∧ H(q′) = z

]
Since Q j(I) is a deterministic function of V j−1(I), it is also a constant when conditioning on V j−1(I) =

v( j−1)
I . We proceed by considering the following cases:

Case 1: q′ ∈ Q j−1(I). In this case, the event H(q′) = z is implied by the event W. Indeed, if

Pr
[
FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi(B) = v(i)

B

]
> 0 ,

then the oracle’s response to query q′ given by v(i)
B must be consistent with its response in v( j−1)

I ).
Thus,

Pr
[
q ∈ Q(A) \ Q j(I) | W ∧ H(q′) = z

]
= Pr

[
q ∈ Q(A) \ Q j(I) | W

]
= Pr

[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
Case 2: q′ ∈ Q j(I) \ Q j−1(I) or q′ < Q j(I). In the first case, the event FirstMiss j implies that q′ < Q(A). In

the second case, the event Good( j)
i implies that q′ < Q(A). Since all of Bob’s queries are distinct,

Vi−1(B) = v(i−1)
B implies q′ < Qi−1(B). Thus, W implies q′ < Q(A) ∪ Qi−1(B) ∪ Q j−1(I). Applying

Bayes rule, we can write:

Pr
[
q ∈ Q(A) \ Q j(I) | W ∧ H(q′) = z

]
= Pr

[
q ∈ Q(A) \ Q j(I) | W

]
·

Pr
[
H(q′) = z | W ∧ q ∈ Q(A) \ Q j(I)

]
Pr

[
H(q′) = z | W

]
= Pr

[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
·

Pr
[
H(q′) = z | W ∧ q ∈ Q(A) \ Q j(I)

]
Pr

[
H(q′) = z | W

] .

Thus, to prove the claim it is enough to show that

Pr
[
H(q′) = z | W ∧ q ∈ Q(A) \ Q j(I)

]
= Pr

[
H(q′) = z | W

]
.

To see this, note that FirstMiss j is a deterministic function of V(A) and V j−1(I) and Good( j)
i is a

deterministic function of Vi−1(B), V j−1(I) and V(A), hence W is a deterministic function of Vi−1(B),
V j−1(I) and V(A), as is the event W ∧ q ∈ Q(A) \ Q j(I). Consider a hypothetical OQ process Y that
first simulates Alice with random coins rA to compute her output (M,V), then simulates Bob for
i − 1 queries using Alice’s output and random coins rB and finally simulates Ivy for j − 1 rounds.
V(Y) = V(A)�Vi−1(B)�V j−1(I) and Q(Y) = Q(A)∪Qi−1(B)∪Q j−1(I). We can think of both W and
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W ∧q ∈ Q(A) \Q j(I) as deterministic functions of V(Y). Moreover, V0(Y) = (rA, rB) is independent
of the random oracle, thus by Corollary 3.2 (taking S = T = {q′}) we have

Pr
[
H(q′) = z | W

]
= Pr

[
H(q′) = z | W ∧ q′ < Q(Y)

]
= Pr

[
H(q′) = z

]
= Pr

[
H(q′) = z | W ∧ q ∈ Q(A) \ Q j(I) ∧ q′ < Q(Y)

]
= Pr

[
H(q′) = z | W ∧ q ∈ Q(A) \ Q j(I)

]
�

Using the previous claim, we can show that if, conditioned on Ivy’s view and FirstMiss j, all queries that
have not already been made by Ivy are “light”, then the probability that Ivy has missed an intersection query
at round j is small:

Claim 3.5. Let 0 < ε < 1, j ∈ {1, . . . , n} and v( j−1)
I be a view such that Pr

[
FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
> 0.

If for every query q it holds that

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
< γ ≤

ε

2em

then Pr
[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
< ε/2.

Proof. Since Fail( j) =
⊎m

i=1 Fail( j)
i , we can write

Pr
[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
=

m∑
i=1

Pr
[
Fail( j)

i | FirstMiss j ∧ V j−1(I) = v( j−1)
I

]
.

Let δ = 1/(m+1), i > k and v(k)
B = ((rB,M), t1, . . . , tk) be a potential view of Bob. We will prove by induction

on i that, for every i ∈ {1, . . . ,m} and all views v( j−1)
I , v(i−1)

B such that

Pr
[
FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i−1 ∧ Vi−1(B) = v(i−1)

B

]
> 0 ,

the following conditions hold:

1. For all q, q is light:

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i−1 ∧ Vi−1(B) = v(i−1)

B

]
<

γ

(1 − δ)i−1 .

2. The probability that Bob’s ith query is the first missed intersection query is small:

Pr
[
Fail( j)

i | FirstMiss j ∧ V j−1(I) = v( j−1)
I ∧ Good( j)

i−1 ∧ Vi−1(B) = v(i−1)
B

]
<

γ

(1 − δ)i−1

For i = 1, condition 1 is the same as the precondition of the claim except that we also conditioning on
V0(B) = v(0)

B . Since we are already conditioning on v(0)
I which is equal to Alice’s output M, V0(B) = (rB,M)

is independent of both Alice and Ivy’s views and conditioning on it does not affect the probability that
q ∈ Q(A) \Q j(I). Condition 2 follows from condition 1, since q1(B) is a deterministic function of V0(B) and
Fail( j)

1 is the event q1(B) ∈ Q(A) \ Q j(I).
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Assume all the conditions hold up to some i ∈ {1, . . . ,m − 1}. By Claim 3.4, to show that condition 1 is
satisfied for i + 1 it is sufficient to prove that

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
<

γ

(1 − δ)i .

Note that this doesn’t follow immediately from the induction hypothesis, since we are conditioning on
Good( j)

i rather than Good( j)
i−1.

To simplify notation, let Z
de f
=

[
FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Vi−1(B) = v(i−1)
B

]
. Since Good( j)

i implies

Good( j)
i−1, for all q it holds that:

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi−1(B) = v(i−1)

B

]
= Pr

[
q ∈ Q(A) \ Q j(I) | Z ∧ Good( j)

i−1 ∧ Good( j)
i

]
≤

Pr
[
q ∈ Q(A) \ Q j(I) | Z ∧ Good( j)

i−1

]
Pr

[
Good( j)

i | Z ∧ Good( j)
i−1

]
<

γ

(1 − δ)i−1 ·
1

Pr
[
Good( j)

i | Z ∧ Good( j)
i−1

]
where the first inequality is because for all events A and B, Pr [A|B] ≤ Pr [A] /Pr [B], and the second is due
to condition 1 of the induction hypothesis. Since Good( j)

i is equivalent to ¬Fail( j)
i ∧ Good( j)

i−1,

Pr
[
Good( j)

i | Z ∧ Good( j)
i−1

]
= 1 − Pr

[
Fail( j)

i | Z ∧ Good( j)
i−1

]
> 1 −

γ

(1 − δ)i−1

≥ 1 − δ

where the first inequality is due to condition 2 of the induction hypothesis and the second follows from the
fact that i ≤ m, the inequality (1 − 1/(m + 1))m ≥ e−1 and our choices of δ = 1/(m + 1) and γ ≤ δ/e.
Therefore,

Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Good( j)
i ∧ Vi(B) = v(i)

B

]
= Pr

[
q ∈ Q(A) \ Q j(I) | Z ∧ Good( j)

i

]
<

γ

(1 − δ)i−1 ·
1

1 − δ
=

γ

(1 − δ)i ,

(3.3)

hence condition 1 holds for i + 1. We now show that condition 2 for i + 1 follows from condition 1 for
i + 1. Note that qi+1(B) is a deterministic function of Vi(B). Hence, conditioned on Vi(B) = v(i)

B , qi+1(B) is a
constant q. Thus,

Pr
[
Fail( j)

i+1 | FirstMiss j ∧ V j−1(I) = v( j−1)
I ∧ Vi(B) = v(i)

B ∧ Good( j)
i

]
= Pr

[
qi+1(B) ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ∧ Vi(B) = v(i)
B ∧ Good( j)

i

]
<

γ

(1 − δ)i

where the inequality is due to condition 1.
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Finally, to bound the probability of Fail( j) conditioned on FirstMiss j ∧ V j−1(I) = v( j−1)
I :

Pr
[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
=

m∑
i=1

Pr
[
Fail( j)

i | FirstMiss j ∧ V j−1(I) = v( j−1)
I

]
≤

m∑
i=1

Pr
[
Fail( j)

i | FirstMiss j ∧ V j−1(I) = v( j−1)
I ∧ Good( j)

i−1

]
=

m∑
i=1

E
v(i−1)

B

[
Pr

[
Fail( j)

i | FirstMiss j ∧ V j−1(I) = v( j−1)
I ∧ Good( j)

i−1 ∧ Vi−1(B) = v(i−1)
B

]]
<

m∑
i=1

γ

(1 − δ)i−1 ≤ mγe ≤
ε

2
,

where the first inequality is because Fail( j)
i implies Good( j)

i−1 the expectation is over all of Bob’s possible
views (Vi−1(B) = v(i−1)

B ) and the second inequality is due to condition 2 and of the induction claim. �

We use Claim 3.5 to show that for every round j, the probability that Ivy fails for the first time at round
j conditioned on missing all of Alice’s queries at that round is low:

Claim 3.6. For every j ∈ {1, . . . , n} and every view v( j−1)
I such that Pr[FirstMiss j | V j−1(I) = v( j−1)

I ] ≥ ε/2n,
Pr[Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I ] < ε/2

Proof. Fix j and v( j−1)
I . Since Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
≥ ε/2n, the condition in step 6 did not hold

at the end of Ivy’s jth round so the while condition (in step 4) must not hold. Thus,

∀q : Pr
[
q ∈ Q(A) \ (Q j ∪ Q j−1(I)) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
< γ .

Since Q j(I) = Q j ∪ Q j−1(I), we can rewrite this as:

∀q : Pr
[
q ∈ Q(A) \ Q j(I) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
< γ .

Noting that we set γ = ε/(2em), the claim’s statement follows from Claim 3.5. �

Finally, we can use Claim 3.6 to complete the proof of the lemma (that is, to show that Pr [Fail] ≤ ε):

Proof of Lemma 3.3. Note that Fail implies that FirstMiss j occurred for some j ∈ {1, . . . , n} (otherwise Ivy
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hit all n of Alice’s queries, hence all intersection queries). Thus,

Pr [Fail] =

n∑
j=1

Pr
[
Fail ∧ FirstMiss j

]
≤

n∑
j=1

Pr
[
Fail( j) ∧ FirstMiss j

]
=

n∑
j=1

∑
v( j−1)

I

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
Fail( j) ∧ FirstMiss j | V j−1(I) = v( j−1)

I

]

=

n∑
j=1

∑
v( j−1)

I

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
Pr

[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
=

∑
( j,v( j−1)

I )

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
Pr

[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
,

where the inequality is because Fail implies Fail( j) for all j and the final sum is over all pairs ( j, v( j−1)
I ) such

that j ∈ {1, . . . , n} and Pr
[
FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
> 0.

We can partition the set of pairs ( j, v( j−1)
I ) into pairs for which it holds that Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
<

ε/2n and those for which it does not hold. Denote this first set

S
de f
=

{
( j, v( j−1)

I ) | Pr
[
FirstMiss j | V j−1(I) = v( j−1)

I

]
<

ε

2n

}
.

Then,∑
( j,v( j−1)

I )∈S

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
Pr

[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
≤

∑
( j,v( j−1)

I )∈S

Pr
[
V j−1(I) = v( j−1)

I

]
·
ε

2n

≤
∑

( j,v( j−1)
I )

Pr
[
V j−1(I) = v( j−1)

I

]
·
ε

2n

=
ε

2

and, by Claim 3.6,∑
( j,v( j−1)

I )<S

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
Pr

[
Fail( j) | FirstMiss j ∧ V j−1(I) = v( j−1)

I

]
≤

∑
( j,v( j−1)

I )<S

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
·
ε

2

≤
∑

( j,v( j−1)
I )

Pr
[
V j−1(I) = v( j−1)

I

]
Pr

[
FirstMiss j | V j−1(I) = v( j−1)

I

]
·
ε

2

=
ε

2
.

Thus, Pr [Fail] ≤ ε/2 + ε/2 = ε. �
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3.2.5 Bounding the number of queries

Lemma 3.7. Ivy makes Õ(nm/ε) queries using n rounds of adaptivity.

Proof of Lemma 3.7. Since the queries in each round of the for-loop in Algorithm 3 depend only on the
results of the previous round, it is clear that Ivy uses at most n rounds of adaptivity.

Fix a view v( j−1)
I of Ivy at the start of round j. Let Q(k)

j be the value of Q j at the end of the kth iteration
of the while-loop in round j. We bound the total number of queries made in each round by showing that

Pr
[
Q

(k)
j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
< (1 − γ)k−1

(Claim 3.8, below). This implies that for k > (1/γ) · ln(n/ε) = O((m/ε) · log(n/ε)), we have

Pr
[
Q

(k)
j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
< (1 − γ)k < e−γk <

ε

n
,

hence the condition of step 6 will be met and Ivy will exit the while-loop. Since there are n rounds and
each iteration of the while loop adds a single query, the total number of queries is bounded by O((nm/ε) ·
log(n/ε)) ⊆ Õ(nm/ε). �

Claim 3.8. For every round j ∈ {1, . . . , n}, view v( j−1)
I and iteration k of the while-loop,

Pr
[
Q

(k)
j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
≤ (1 − γ)k−1 .

Proof. We prove the claim by induction on k. For k = 1 the claim is trivial. Assume the hypothesis is true
up to iteration k. If the while-loop continues beyond the kth iteration, it must be that at the start of iteration
k + 1 there exists q′ < Q(k)

j ∪ Q j−1(I) such that

Pr
[
q′ ∈ Q(A) | Q(k)

j ∩ Q(A) = ∅ ∧ NoMiss j−1 ∧ V j−1(I) = v( j−1)
I

]
≥ γ .

Noting that Q(k+1)
j = Q

(k)
j ∪ {q

′}, we can write

Pr
[
Q

(k+1)
j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
= Pr

[
q′ < Q(A) ∧ Q(k)

j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)
I

]
= Pr

[
q′ < Q(A) | Q(k)

j ∩ Q(A) = ∅ ∧ NoMiss j−1 ∧ V j−1(I) = v( j−1)
I

]
· Pr

[
Q

(k)
j ∩ Q(A) = ∅ ∧ NoMiss j−1 | V j−1(I) = v( j−1)

I

]
≤ (1 − γ) · (1 − γ)k−1 = (1 − γ)k

where the final inequality is due to the induction hypothesis. �

3.3 Proof of Theorem 1.1

Theorem 1.1. Let f be an oracle algorithm that makes at most n queries to a random oracle H and g an ora-
cle algorithm that makes at most m > n queries to H. If Pr

[
(M,V)← f H(rA); x← gH(rB,M);V(x) = 1

]
≥

1 − ν (i.e., when a puzzle is randomly generated after which the solver g is executed, its output is a valid
solution with probability at least 1 − ν over the random coins rA, rB and H) then for all ε ∈ (0, 1) there
exists an adversary h that makes Õ(nm/ε) queries to H, uses only n levels of adaptivity and satisfies
Pr

[
(M,V)← f H(rA); x← hH(rI ,M);V(x) = 1

]
≥ 1 − ν − ε (where rI is the variable denoting the ran-

dom coins used by h).
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Proof. We now show how the theorem follows from Lemmas 3.7 and 3.3. Let f be an oracle algorithm that
makes at most n queries to H and g a solver that makes at most m > n queries to H, and satisfies

Pr
[
(M,V)← f H(rA); x← gH(rB,M);V(x) , 1

]
≤ ν .

We claim the following process will successfully solve a puzzle with probability at least 1 − ν − ε and
make only the queries required by an execution of Alg. 3 (which by Lemma 3.7 satisfies the requirements
of the theorem):

1. Run Ivy (Alg. 3) on input M with parameter ε.

2. Generate a new oracle, H∗, consistent with H on Q(I) (i.e., H∗(q) = H(q) for all q ∈ Q(I) and H∗(q)
is chosen independently at random for all other q).

3. Run Bob with the new oracle: x∗ ← gH∗(rB,M) and output x∗.

It is easy to see that the only oracle queries are made in the execution of Ivy. To see why the success
probability is 1 − ν − ε, we will show a sequence of three processes, beginning with an honest solving
process (that succeeds with probability 1 − ν) and ending with our new solver, and prove that at most an
additional ε error is incurred when moving between them.

We describe the honest solving process as an OQ process, F, consisting of the a combination of Alice,
Ivy and Bob. An execution of F consists of:

1. Run Alice: (M,V)← f H(rA)

2. Run Ivy (Alg. 3) with parameter ε.

3. Run Bob: x← gH(rB,M)

The initial state of F, V0(F), consists of the independent random coins of Alice, Ivy and Bob. Think of the
random oracle as using lazy evaluation: H(q) is randomly chosen the first time the oracle is queried on index
q. By our assumption, Pr [V(x) = 1] ≥ 1 − ν (where the probability is over the random coins of the parties
and the random oracle).

Now, consider a modified OQ process F′ that works as follows:

1. Run Alice: (M,V)← f H(rA)

2. Run Ivy (Alg. 3) with parameter ε.

3. Generate a new oracle, H′, consistent with H on Q(I)∪Q(A) (i.e., H′(q) = H(q) for all q ∈ Q(I)∪Q(A)
and H′(q) is chosen independently at random for all other q).

4. Run Bob with the new oracle: x′ ← gH′(rB,M).

It is easy to see that (V, x′) are distributed identically to (V, x), hence Pr [V(x′) = 1] ≥ 1 − ν. Finally, we
consider the OQ process F∗, corresponding to our solver:

1. Run Alice: (M,V)← f H(rA)

2. Run Ivy (Alg. 3) with parameter ε.

3. Generate a new oracle, H∗, consistent with H on Q(I).

4. Run Bob with the new oracle: x∗ ← gH∗(rB,M).
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Note that the only difference between F∗ and F′ is that H∗ may differ from H′ on indices in Q(A) \ Q(I). If
Bob does not query indices in Q(A) \ Q(I), the two processes behave identically. However, saying that Bob
did not query indices in Q(A) \ Q(I) is equivalent to saying that Ivy did not miss any intersection queries,
which happens with probability at most ε. Thus, the pairs (V, x′) and (V, x∗) have statistical distance at
most ε, so

Pr
F∗

[
V(x∗) = 1

]
≥ Pr

F′

[
V(x′) = 1

]
− ε ≥ 1 − ν − ε .

�

4 A Time-Lock Puzzle with a Linear Difficulty Gap

In this section we give the construction and proof for Theorem 1.4:

Theorem 1.4. Let k be a security parameter. There exist oracle functions f and g that satisfy:

1. (Efficiency) (M,VM)← f H(k, r) can be computed using n parallel (non-adaptive) queries to H.

2. (Completeness) x← gH(k,M) can be computed using n serial (adaptive) queries to H and the output
of g always satisfiesVM(x) = 1 (g is deterministic).

3. (Soundness) For every oracle function h that makes less than n serial rounds of queries to H and
poly(k) queries overall to H in total, Pr

[
(M,VM)← f H(k, r); x← hH(k, rI ,M);VM(x) = 1

]
= neg(k)

(where neg is some negligible function in k).

In the description below, we omit the security parameter k: the security parameter is only used to
determine the range of the random oracle — we assume w.l.o.g. that H(q) returns k bits (if the ran-
dom oracle returns fewer bits, we can interpret a query H(q) as concatenation of multiple queries (e.g.,
H(kq)�H(kq + 1)� · · · �H(kq + k− 1)). To further simplify notation, our definition of f only generates the
message M. The (implicit) solution validatorVM checks whether its input is equal to f ’s input (our sound-
ness proof is slightly stronger — we show that no adversary making less than n serial rounds of queries to
H can find any valid preimage of M under f ).

We define the puzzle-generating function f to be:

f H(x0, . . . , xn)
de f
= (x0,H(x0) ⊕ x1, . . . ,H(xn−1) ⊕ xn)

(where the input is interpreted as n + 1 k-bit query indices).
The honest solver g inverts f by running Algorithm 4:

Algorithm 4 Honest solver g on input M = (M0, . . . ,Mn) and oracle H
1: x0 ← M0 // x0 is not “encrypted”.
2: for i ∈ {1, . . . , n} do
3: xi ← H(xi−1) ⊕ Mi // “decrypting” xi requires an oracle query on index xi−1.
4: Output (x0, . . . , xn)

Proof Sketch for Theorem 1.4. By inspection, f can be computed with n non-adaptive queries: the values
H(x1), . . . ,H(xn) can be obtained in parallel. The correctness of the honest inverter (Alg. 4) and the fact that
it uses n serial queries is also easy to see.

The main part of the proof is to show that every inverter making poly(k) queries to H needs to use at
least n rounds of adaptive queries. To prove this, we first claim that any algorithm that outputs xi+1 with non-
negligible probability must query H on xi. This is because, even taken together, the value of f H(x0, . . . , xn),
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the values of {x0, . . . , xn} \ {xi+1} and the responses of the random oracle on all queries except xi give no
information (in the information-theoretic sense) about xi+1. Thus, the probability that an algorithm outputs
xi+1 without querying H on xi is negligible in k (the output size of H). Note that this remains true if we
allow the algorithm to output a polynomial number of guesses for xi+1.

Now, consider an algorithm h making multiple rounds of queries to the oracle H, such that in each round
the indices queried depend only on the responses from previous rounds. We can think of h as also outputting
the indices it queries in each round (and the total number of indices output by h is polynomial in k). If h
correctly inverts f on input M = f H(x0, . . . , xn), it must output xn at some round (since f is injective). By
induction (and using the reasoning above), the probability that h first outputs (queries) xi and xi+1 in the
same round is negligible (since we showed it must query xi before xi+1). Therefore, the algorithm must use
at least n rounds of adaptivity. �

4.1 Increasing the Computation/Communication Ratio

Note that while our positive construction of a time-lock puzzle in the random-oracle model is optimal with
respect to query complexity, the description of a puzzle that requires n adaptive queries to solve is also linear
in n. When the cost of communication is comparable to an oracle query, simply communicating the puzzle
takes O(n) time, negating the benefit of parallel queries. We improve this ratio arbitrarily by replacing each
oracle call with d composed calls (i.e., each call querying the oracle on the response to the previous call).
This will increase both the (parallel) generation and solution time by a factor of d without changing the size

of the puzzle description. Formally, let H(1) de f
= H and for d > 1 let H(d)(q)

de f
= H(H(d−1)(q)). Then:

Claim 4.2. The function f H(d)
(x0, . . . , x′n) satisfies the requirements of Theorem 1.4 with n = dn′.

Proof Sketch. The main idea is that any algorithm that outputs H(i)(x) with non-negligible probability must
query H on H(i−1)(x) (otherwise the algorithm has no information about H(i)(x)). By induction, it follows
that an algorithm that makes only a polynomial number (in k) of queries to H needs d adaptive rounds to
compute H(d)(x). Composing this idea with the induction in the proof of Theorem 1.4, we get the required
parameters. �

5 Public Time-Lock Puzzle Constructions

Our negative result only applies to time-lock puzzles for which the solution verifier does not have access to
the random oracle. This rules out any puzzles for which the puzzle generator knows the solution “ahead of
time”.

In this section we construct time-lock puzzles whose verifier makes essential use of the random oracle.
Our constructions are “public puzzles”, in the sense that the puzzle description is simply a random string
and the verification does not require any secret information.

We describe both our constructions using an interactive verifier in a hybrid model in which an ideal
commitment functionality exists. As a final step we will use the random oracle to implement the commitment
functionality and the Fiat-Shamir heuristic to make the protocol non-interactive.

The high-level idea is to force the solver to commit to a directed “hash-graph” (in which each node is
labeled with the hash of its children, and the leaves with the puzzle string). The verifier will then challenge
the solver by choosing a subset of nodes at random. For each of the selected nodes, the solver will open the
commitment to the labels of the node and its children. The verifier will accept if all the commitments are
opened correctly and the label of each selected node is consistent with the labels of its children.
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More formally, let G = (V, E) be a directed, acyclic graph and denote n
de f
= |V |. Denote ν(v) the list of

children of v in G. We say v is in layer ` of the graph if the longest path from v to a leaf is of length `. We
denote diam(G) the diameter of the graph (the length of the longest path in the graph).

Definition 5.1 (Good Node). Let G′ be an arbitrary labeling of graph nodes. We will say a node label v is
good in G′ if is consistent with H(M, ν(v)1, . . . , ν(v)d+(v)) (where ν(v)1, . . . , ν(v)d+(v) denote the labels of its
children in G′).

Algorithm 5 describes the honest public solver and Algorithm 6 the corresponding verifier.

Algorithm 5 Honest “public” solver g on input M and oracle H
1: label every leaf node of G with the string 0k.
2: for ` ∈ {1, . . . , diam(G)} do // Compute the hash-graph corresponding to G, by “layers”
3: for every v ∈ V such that v is in layer ` of G do
4: label v with H(M, ν(v)1, . . . , ν(v)d+(v))
5: Send a commitment to the labeling of G to the verifier. // The commitment binds each label to a specific

node.
6: Receive a list of challenge nodes v1, . . . , vk from the verifier.
7: for i ∈ {1, . . . , k} do // Repeat for each challenge node
8: Open the commitments to the labels of vi and ν(vi).

Algorithm 6 “public” verifier on puzzle M and oracle H
1: Wait to receive commitment to labeling of G from solver.
2: Randomly choose k nodes and send v1, . . . , vk to the solver.
3: for i ∈ {1, . . . , k} do // Repeat for each challenge node
4: Verify the commitment opening for the labels of vi and ν(vi)
5: Verify that the v is good in G (by making the query H(M, ν(v)1, . . . , ν(v)d+(v)) and comparing the the

label of v).

Note that total query complexity of the honest solver is n and the parallel complexity is the diameter of
the graph G. The query complexity of the verifier is c · k, where c is the number of oracle queries required
to verify a commitment.

To ensure that a dishonest solver cannot solve the puzzle with parallel complexity significantly less, we
will rely on the following claim:

Claim 5.2. Every adversary that outputs a labeled graph G′ that contains a path of length d consisting
entirely of good nodes must use at least d parallel rounds of queries.

We will use graphs with the following property:

Definition 5.3 (diameter robustness). We say G is (α, β)-diameter robust if, for every S ⊆ V such that
|S | ≥ α|V |, the diameter of the subgraph of G induced by S is least bβ|V |c.

For every such graph, we can prove:

Lemma 5.4. If G is a (α, β)-diameter robust with n vertices, any adversary that makes less than βn parallel
rounds of queries to H will be caught by the verifier of Alg. 6 with probability 1 − αk
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Proof Sketch. Let G′ be the graph labeling committed to by the adversary. If the adversary is challenged
on a bad node, the verifier will reject. Hence, the number of good nodes must be at least αn (otherwise the
adversary will be caught with probability at least 1 − αk). However, in this case there must be a path in
G′ of length at least bβnc consisting entirely of good nodes (due to the diameter robustness property). By
Claim 5.2, this completes the proof. �

5.1 Simple Construction

In our simplest construction, the graph G is the complete DAG (every node is connected to all previous
nodes). We also use a trivial commitment scheme for this construction: the solver sends the entire labeling
of G. The verifier needs only k queries to H (since the commitment verification doesn’t require an oracle
query), while the honest solver needs n serial queries.

Note that the complete DAG is (α, α)-diameter robust for all α ∈ (0, 1) (since every subgraph of m nodes
contains a path of length m. Thus, by lemma 5.4 it follows that any adversary that makes less than 1

2 n
parallel rounds of queries will be caught with probability 1 − 2−k.

5.2 Lowering the Communication Complexity

The major drawback of our simple construction is the communication complexity, which is Ω(n) since the
labeling of the entire graph is sent. The communication complexity of the protocol depends on the out-
degree of the vertices in G (since for each challenge vertex v the solver sends the labels of v and all its
children) and on the communication complexity of the commitments.

5.2.1 Ingredients

To improve the communication complexity, we will use a more compact commitment and also require the
nodes of G to have bounded degree. Our construction will be based on expansion properties of the graph G:

Definition 5.5 (disperser graph). A bipartite graph G = (V,W, E), |V | = |W | = N is a (K, ε)-disperser graph
if every subset S ⊆ W of cardinality K has at least (1 − ε)N distinct neighbors in V .

We will use (γN, γ)-disperser graphs for gamma = O(1/ log N). A random bipartite graph with degree 
O(log N log log N) is such a disperser with high probability.

5.2.2 Construction

We propose the following recursive construction for G. Let G1 be the two-vertex graph. Informally, Gi+1
consists of two identical copies of Gi connected with the edges of a bipartite disperser graph. Formally,
Gi+1 = (Vi+1,Wi+1, Ei+1), where Vi+1 =

{
1, . . . , 2i

}
, Wi+1 =

{
2i + 1, . . . , 2i+1

}
and

Ei+1
de f
= Ei ∪

{
(u + 2i, v + 2i) | (u, v) ∈ Ei

}
∪ E′i+1 ,

such that the graph G′ = (V,W, E′i+1) is a (γ2i, γ)-disperser.

Lemma 5.6. For every i and α ∈ (0, 1), the graph Gi is (α, α − iγ)-diameter robust.

Proof. The proof is by induction on i. For i = 1, Gi consists of two vertices, and is trivially (α, α) diameter
robust for all α ∈ (0, 1). Assuming the hypothesis holds for i, consider the graph Gi+1 = (Vi+1,Wi+1, Ei+1).

Fix an arbitrary α ∈ (0, 1) (i.e., the number of good nodes in Gi+1 is at least α2i+1). Let δ2i be the number
of good nodes in Wi+1. Since the total number of good nodes is α2i+1, there must be at least (2α− δ)2i good
nodes in Vi+1.
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By the induction hypothesis, there exists a path PW ⊆ Wi+1 such that |PW | ≥ (δ − iγ)2i and all the nodes
in PW are good. In the same way, there exists a path PV ⊆ Vi+1 such that |PV | ≥ (2α − δ − iγ)2i and all the
nodes in PV are good.

We must show that there exists a path P ⊂ Wi+1 ∪ Vi+1 such that |P| ≥ (α − (i + 1)γ)2i+1. If δ < 2γ,
then we can set P = PW , since in this case |PW | > (2α − (i + 2)γ)2i ≥ (α − (i + 1)γ)2i+1. If δ > 2α − 2γ,
then in the same way we can set P = PV . Otherwise, consider the sets S ⊂ PW ⊆ Wi+1 consisting of the
last γ2i nodes on PW and T ⊂ PV ⊆ Vi+1 consisting of the first γ2i nodes on PV . Since Gi+1 contains a
(γ2i, γ)-disperser graph between the nodes of Wi+1 and Vi+1, and given that |S | = γ2i, the neighbor set of S
is of size at least (1 − γ)2i, hence must have an intersection with T ; that is there exist vertices w ∈ S and
v ∈ T such that (w, v) ∈ Ei+1. We define our new path P by “stitching together” the paths PW and PV with
the edge (w, v): i.e., P is defined to be the nodes in PW up to node w, concatenated with the nodes of PV

from node v onwards. Since w and v are in the last (resp. first) γ2i nodes of PW (resp. PV ) the length of P is
at least

|P| ≥ |PW | − γ2i + |PV | − γ2i ≥ (δ − iγ + 2α − δ − iγ)2i − 2γ = (α − (i + 1)γ)2i+1 .

�

Corollary 5.7. Let Glog n be constructed with parameter γ = 1/(4 log n). Then by Lemma 5.6, Glog n is a
(1/2, 1/4)-diameter robust graph with n vertices.

If we plug Glog n into Alg. 5, Lemma 5.4 guarantees that any adversary who solves a puzzle must make
at least 1

4 n serial rounds of oracle queries or be caught with probability 1 − 2−k.

6 Discussion and Open Questions

Time-Lock Puzzle Variations. In our definition of a time-lock puzzle, the solution validator,V, output by
the puzzle generator does not have access to the random oracle. This does not matter for most constructive
uses of time-lock puzzles in the literature: the majority require the puzzle generator to know the solution to
the puzzle when it is generated (in which case the solution validator is the trivial one that compares its input
to a hard-wired constant). The significant exceptions are proofs-of-work and timed signatures [9] (where
the time-lock puzzle’s solutions don’t matter, only whether the verifier accepts them).

A natural question is whether our negative results also hold for the more general definition of time-lock
puzzles, in whichV is allowed to query the random oracle. The answer in this case is no: ifV is allowed to
query the oracle, there exists a simple counter-example for our negative result: the puzzle generator outputs
a random string M (without making any oracle queries), and the corresponding V outputs 1 on input x iff
x = H(H(· · ·H(M) · · · )) (i.e., x is the result of n iterated queries to the hash function). It is easy to see that
any solver must make at least one query to the oracle in order to produce a valid solution (in fact, at least
n adaptive rounds are required). This contradicts the statement of Theorems 1.1 and 1.2, who guarantee a
solver that does not make any queries at all (since the puzzle generator did not make any).

Open Questions. The most obvious open question relating to time-lock puzzles is finding constructions
based on assumptions other than the difficulty of factoring. Although this work rules out black-box con-
structions (with a super-constant gap) from one-way permutations and collision-resistant hash functions,
we have no reason to believe that time-lock puzzles based on other concrete problems (e.g., lattice-based
problems) do not exist. Extending our approach to other general assumptions (e.g., trapdoor permutations)
is also an interesting open problem.

One of the motivations for looking at time-lock puzzles in the random-oracle model is the search for
puzzles that are resistant to quantum attack. In this direction there still remains work to be done: on the
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positive side, our construction may not be secure against adversaries with quantum access to the random
oracle (as noted by Dagdelen et al. [15]). On the other hand, when the honest parties are quantum, the lower
bound question is still open as well (Brassard and Salvail [10] and, indepedently, Biham et al [5], give a
quantum version of Merkle puzzles that require the adversary to make n3/2 queries in order to recover the
shared key, but do not prove optimality).
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Nomenclature

� Vector concatenation operator: (x1, . . . , xn) � y
de f
= (x1, . . . , xn, y), page 9

δ 1/(m + 1), page 14

ε The error parameter: Ivy can fail to find all intersection queries with probability O(ε), page 11

γ The “heaviness” parameter Ivy uses in Algorithm 3. We set γ = ε/(2em), page 11

ν The failure probability of the inverter, g (a.k.a Bob): Pr
[
(M,V)← f H(r); x← gH(M);V(x) , 1

]
≤

ν, page 3

qi(B) The ith query asked by Bob, page 11
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QF(i) The query list of the Oracle-Query (OQ) process F: Qi(F)
de f
= (F1(V0), . . . , Fi(Vi−1)), page 9

Q j(I) The vector of queries asked by Ivy in the first j rounds, page 11

V The puzzle solution validator; this may be computed by Alice together with the puzzle itself
((M,V) = f H(rA)); A solution x is considered valid ifV(x) = 1., page 3

Vi(F) The view of an Oracle-Query (OQ) process F: Vi = Vi−1 � H(Fi(Vi−1)) and V0(F) consists of the
input and random coins for the process, page 9

V j(I) Ivy’s view after the jth round of queries, page 11

f The puzzle-generator function. f makes at most n queries to the random oracle, page 3

g The honest solver for the puzzle-generator function. g makes at most m queries to the random oracle,
page 3

h The puzzle-solving adversary guaranteed by Theorem 1.1. h makes at most Õ(nm/ε) queries to the
random oracle and uses only n levels of adaptivity., page 3

J Javier, the adversary of Theorem 1.2, page 4

M The puzzle message sent by Alice ((M,V) = f H(rA)), page 3

m The number of queries to the random oracle made by the inverter, g, page 3

n The number of queries to the random oracle made by f , page 3

rA Alice’s random coins (the coins used in puzzle generation), page 3

rB Bob’s random coins (the coins used by the honest puzzle solver), page 3

rJ The random coins used by the puzzle-solving adversary, h, page 3

W The event FirstMiss j ∧ V j−1(I) = v( j−1)
I ∧ Good( j)

i ∧ Vi−1(B) = v(i−1)
B ], page 13

Fail Failn, page 11

Fail( j) The event that Ivy has not hit all intersection queries in her first j rounds (Q(B) ∩ Q(A) * Q j(I)),
page 11

Fail( j)
i The event that that Bob’s ith query is the first intersection query that was missed by Ivy in the first j

rounds of Algorithm 3 (i.e., Good( j)
i−1 holds and qi(B) ∈ Q(A) \ Q j(I))., page 12

FirstMiss j the event that round j is the first at which Ivy misses all of Alice’s queries (FirstMiss j
de f
=

Miss j ∧ NoMiss j−1), page 11

Good( j)
i The event that the first i queries made by Bob are either not intersection queries or were queried

by Ivy in her first j rounds (i.e., {q1(B), . . . , qi(B)} ∩ Q(A) ⊆ Q j(I))., page 12

Miss j The event that Ivy “missed” all of Alice’s queries in round j (we say Ivy missed if Q j(I) ∩ Q(A) =

Q j−1(I) ∩ Q(A); equivalently: Q j ∩ Q(A) = ∅)., page 11

NoMiss j the event that Ivy hits at least one more of Alice’s queries in each of the first j rounds (NoMiss j
de f
=∧ j

k=1 ¬Missk), page 11

Q j The set of queries that Ivy makes to the random oracle in the jth round of Algorithm 3, page 11
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